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Abstract

In this paper, the homotopy analysis method is employed to decompose
the classical boundary-value problem of nonlinear composite media into an
infinite number of linear partial differential equations, solving each linear
partial differential equation by separating variables together with the method of
undetermined coefficients. Although the calculation is rather complicated, the
solutions obtained in this paper have much higher precision than those known
ones. We also investigate the effective conductivity of nonlinear composite
media, and obtain an approximate expression for it.

PACS numbers: 02.60.Lj, 02.30.Jr, 02.30.Mv

1. Introduction

There has been growing interest in the physics of nonlinear inhomogeneous media because
of their potential applications in engineering and science [1–8]. In particular, much effort
has been centered around the calculations of the effective response in nonlinear composite
systems consisting of two or more materials of different dielectric functions or conductivities
[1, 7–15]. According to whether or not the linear part is dominant in the constitutive relation,
two important limits are studied: weakly nonlinear and strongly nonlinear composites. The
perturbation method is a powerful tool to deal with the weakly nonlinear case for the reason
that weak nonlinearity can be treated as a small perturbation. However, it is unlucky that
it does not work for the strongly nonlinear case. The homotopy analysis method (HAM)
[16–20] is effective in dealing with strongly nonlinear equations. Recently, Liu and Li [21]
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considered a model nonlinear composite with a cylindrical inclusion embedded in a host
medium. They employed the HAM to study such a system with the more general J–E relation
of the form J = σαE + χα|E|2E, where σ and χ are conductive coefficients, α = i or m
indicates inclusions or host medium, respectively. For such a mixed nonlinear system, the
static Maxwell equations ∇ × E = 0 and ∇ · J = 0 lead to the following equation:

∇ · [−σα∇φ − χα|∇φ|2∇φ] = 0, (1)

where φ is the potential which satisfies E = −∇φ. The boundary conditions for the continuity
of the potential and the current density must be applied on the surfaces of inclusions

φm = φi on ∂�i, (2)

n̂ · Jm = n̂ · J i on ∂�i (from∇ · J = 0), (3)

where ∂�i denotes the surface of the inclusion.
It is worth mentioning that in [21], for simplicity of calculation, the mode expansion

method was first used to separate variables, namely, by assuming the electric potential in the
form

φα(r, θ) = φα
1 (r) cos θ + φα

3 (r) cos 3θ + · · · , α = i, m. (4)

Substituting (4) into the governing equation (1) as well as into the boundary conditions (2)
and (3) gives the resulting differential equations and the boundary conditions as follows:

∞∑
n

hα
n(r) cos(2n − 1)θ = 0, in �α, α = i, m,

∞∑
n

χig
i
n(r) cos(2n − 1)θ =

∞∑
n

χmgm
n (r) cos(2n − 1)θ |r=ρ,

∞∑
n

φi
n(r) cos(2n − 1)θ =

∞∑
n

φm
n (r) cos(2n − 1)θ |r=ρ,

where hα
n(r) and gα

n (r) are the functions of φα
n (r) and their derivatives. Thus an ordinary

system is obtained

hi
n(r) = 0, in �i, n = 1, 3, . . . , (5)

hm
n (r) = 0, in �m, n = 1, 3, . . . , (6)

χig
i
n(r) = χmgm

n (r)|r=ρ, n = 1, 3, . . . , (7)

φi
n(r) = φm

n (r)|r=ρ, n = 1, 3, . . . . (8)

Furthermore, they truncate the system by retaining only the first mode to keep the lowest
approximation. The resulting equations and the boundary conditions read

σiF1[φi] + χiF3[φi] = 0, (9)

σmF1[φm] + χmF3[φm] = 0, (10)

φi(r) = φm(r)|r=ρ, (11)

σiJ1[φi] + χiJ3[φi] = σmJ1[φm] + χmJ3[φm]|r=ρ, (12)
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where

F1[φ] = (4r3φr + 4r4φrr − 4r2φ)/(4r4),

F3[φ] = (
r2φ2φrr − 3φ3 + r2φφr

2 − rφ2φr + 9r4φr
2φrr + 3r3φr

3)/(4r4),

J1[φ] = φr, J3[φ] = (1/4r2)φ2φr + 3φr
3/4.

As there will be no confusion in subsequent discussions, the subscript 1 in (9)–(12) is omitted.
Although the obtained solutions in [21] have much higher precision for the system (9)–

(12), they still keep the lowest approximation w.r.t. r and θ for the original system (1)–(3).
In this paper, we solve the system (1)–(3) again by directly using the HAM. In this case, the
obtained higher order deformation equations are linear partial differential ones. Solving each
of them by separating variables together with the method of undetermined coefficients gives
much more analytical approximate solutions.

The paper is organized as follows. In section 2, we briefly introduce the basic idea of the
HAM. In section 3, the HAM is employed to solve the original system (1)–(3). In section 4,
the convergence of the homotopy analysis solutions is analyzed. In section 5, the effective
conductivity is calculated and formulated. Finally, a brief summary is given.

2. The homotopy analysis method

Based on homotopy, which is a basic concept in topology, a new analytic method (namely, the
HAM) is proposed to obtain series solutions of nonlinear differential equations. Different from
perturbation techniques, this approach is independent of any small/large physical parameters.
So, it is valid not only for weakly nonlinear systems but also for strongly nonlinear cases.
Furthermore, as shown in [20], the HAM logically contains Lyapunov’s small parameter
method, the δ-expansion method and Adomian’s decomposition method, and therefore unifies
these nonperturbation methods and is more general than them. Besides, different from all
previous analytic methods, the HAM provides us with a simple way to adjust and control
the convergence of solution series. Especially, it provides us with great freedom to replace a
nonlinear differential equation of order n into an infinite number of linear differential equations
of order k, where the order k is even unnecessary to be equal to the order n.

The basic idea of the HAM is as follows.

2.1. Rule of solution expression

When the HAM is applied to solve a nonlinear differential system, such as

N [u(r, t)] = 0, (13)

where N is a nonlinear operator.
First, a set of base functions

{en(r, t) | n = 0, 1, 2, 3, . . .}
are selected to represent the required solution

u(r, t) =
∞∑

n=0

cnen(r, t),

where cn is a coefficient. This is the so-called rule of solution expression. We should emphasize
two facts. First, a solution of a nonlinear problem may be expressed by different sets of
base functions. Second, in many cases, from physical characteristics and boundary/initial
conditions, it is often not very difficult to determine the type of base functions convenient
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to represent solutions of a given nonlinear problem. But how can we know that a set of
base functions is better than others and is more efficient to approximate a nonlinear problem?
Unfortunately, up to now, the rule of solution expression implies such an assumption that
we should have, more or less, some knowledge about a given nonlinear problem a priori.
Fortunately, the so-called homotopy-Padé technique can greatly enlarge the convergence
region and rate of solution series.

2.2. Choosing initial guess and auxiliary linear operator

It is under the rule of solution expression that the initial approximation and the auxiliary
linear operator are selected. The initial guess u0(r, t) must be expressed by a sum of the base
functions, i.e.

u0(r, t) =
M0∑
n=0

anen(r, t), (14)

where an is a coefficient and M0 is an integer.
Similarly, the auxiliary linear operator L must be chosen in such a way that the solution

to the equation

L[w(r, t)] = 0 (15)

must be expressed by a sum of the base functions, say,

w(r, t) =
M1∑
n=0

bnen(r, t), (16)

where bn is a coefficient and M1 is an integer. Moreover, L has the property L[w(r, t)] = 0
when w(r, t) = 0.

2.3. The zero-order deformation equation

Using q ∈ [0, 1] as an embedding parameter, we construct a new kind of homotopy with the
form

H(�(r, t, q); q, h,H(r, t)) = (1 − q){L[�(r, t, q) − u0(r, t)]} − qhH(r, t)N [�(r, t, q)],

(17)

in which h �= 0 is an auxiliary parameter, H(r, t) �= 0 is an auxiliary function. They play an
important role in the homotopy analysis method.

Forcing the homotopy (17) to be zero, we obtain the so-called zero-order deformation
equation

(1 − q){L[�(r, t, q) − u0(r, t)]} = qhH(r, t)N[�(r, t, q)]. (18)

When q = 0, the zero-order deformation equation (18) becomes

L[�(r, t, 0) − u0(r, t)] = 0, (19)

which gives

�(r, t, 0) = u0(r, t). (20)

When q = 1, since h �= 0 and H(r, t) �= 0, the zero-order deformation equation (18) is
equivalent to

N [�(r, t, 1)] = 0, (21)
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which is exactly the same as the original equation (13), provided

�(r, t, 1) = u(r, t). (22)

Thus, according to (20) and (22), as the embedding parameter q increases from 0 to
1,�(r, t, q) varies continuously from the initial guess u0(r, t) to the exact solution u(r, t) of
the original equation (13).

Due to Taylor’s theorem and (20), we expand �(r, t, q) in the power series

�(r, t, q) = u0(r, t) +
∞∑

n=1

un(r, t)q
n, (23)

where

un(r, t) = 1

n!

∂n�(r, t, q)

∂qn

∣∣∣∣
q=0

. (24)

Assuming that the above series is convergent when q = 1, we have due to (20) that

u(r, t) = u0(r, t) +
∞∑

n=1

un(r, t). (25)

2.4. The higher order deformation equation

Differentiating the zero-order deformation equation (18) n times with respect to q and then
dividing them by n! and finally setting q = 0, we have the so-called nth-order deformation
equation

L[un(r, t) − χnun−1(r, t)] = hH(r, t)Rn(�un−1, r, t), (26)

where

Rn(�un−1, r, t) = 1

(n − 1)!

∂n−1N [�(r, t, q)]

∂qn−1

∣∣∣∣
q=0

(27)

and

χn =
{

0, n � 1,

1, n > 1.
(28)

The nth-order deformation equation (26) is linear. By properly choosing initial guess
u0(r, t), the auxiliary linear operator L and the auxiliary function H(r, t), equation (26) can
easily be solved, especially by means of symbolic computation software such as Mathematica,
Maple and so on.

2.5. The convergence theorem

As proved by Liao [20] in general, if h is properly chosen (as shown in figure 1, the value of h
is determined by means of the so-called h curve) so that the series (23) is convergent at q = 1,
one can get as accurate approximations as possible by means of the series (25), i.e. we have
the following.

Theorem (convergence theorem). As long as the series

u0(r, t) +
∞∑

n=1

un(r, t)

is convergent, where un(r, t) is governed by the higher order deformation equation (26) under
definitions (27) and (28), it must be a solution of equation (13).
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3. Homotopy analysis solution

In this section, we apply the HAM to solve the system (1)–(3).
To meet the asymptotic property

φi(0, 0) = 0, φm(∞, 0) = −E0r, (29)

we can express φm in the form

φm(r, θ) = ar cos θ +
∞∑

j=1

fj (r) cos(jθ), (30)

and φi in the form

φi(r, θ) =
∞∑

j=1

gj (r) cos(jθ), (31)

where a is a coefficient, fj (r) is a rational proper fraction w.r.t. r, gj (r) is a polynomial w.r.t.
r. This provides us with the so-called rule of solution expression.

Under the rule of solution expression denoted by (30) and (31) as well as the property
(29), it is straightforward to choose the initial guess

φm
0(r, θ) = −E0d0 cos θ

r
(32)

and

φi
0(r, θ) = −E0c0r cos θ, (33)

where d0 and c0 are parameters to be determined later. E0 is an external electric field.
According to the rule of solution expression and from (1), we choose the auxiliary linear
operators as

L[φα(r, θ)] = − 1

r2

(
rφα

r + φα
θθ + r2φα

rr

)
, α = i, m, (34)

with the property L[φα(r, θ)] = 0 when φα(r, θ) = 0.
It is to be stressed that the operator (34) is composed by the linear part of equation (1).

However, in the HAM the linear operator L may have nothing to do with the original system.
Following the method of separating variables, for equation (34), by assuming φα(r, θ) =

f (r)g(θ), we have

frr +
1

r
fr − c2

r2
f = 0, gθθ + c2g = 0. (35)

The solutions to (35) can easily be obtained as

f = C1r
c + C2r

−c, g = C3 cos cθ + C4 sin cθ. (36)

Letting C4 = 0, the obtained solution φm(r, θ) = f (r)g(θ) = (C̃1r
c +C̃2r

−c) cos cθ coincides
with (30). Similarly, letting C2 = C4 = 0, the obtained solution φi(r, θ) = f (r)g(θ) =
C̃1r

c cos cθ coincides with (31).
By mapping u(r, t) → �(r, t, q), the nonlinear operator (1) is rewritten as

N [�α(r, θ; q)] = −[
σαr3�α

r + χαr3(�α
r

)3 − rχα�α
r

(
�α

θ

)2
+ r4σα�α

rr

+ 3r4χα�α
rr

(
�α

r

)2
+ r2χα�α

rr

(
�α

θ

)2
+ 4χαr2�α

θ�
α

r�
α

rθ

+ σαr2�α
θθ + χαr2�α

θθ

(
�α

r

)2
+ 3χα�α

θθ

(
�α

θ

)2]/
r4, α = i, m,

(37)
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where q ∈ [0, 1] is an embedding parameter. Let h1 ( �= 0), h2 ( �= 0) denote nonzero auxiliary
parameters and H1(r, θ),H2(r, θ) nonzero auxiliary functions, respectively. The zero-order
deformation equations in the host and in the inclusion constructed by us respectively are

(1 − q)L
[
�m(r, θ, q) − φm

0(r, θ)
] = qh1H1(r, θ)N [�m(r, θ, q)] (38)

and

(1 − q)L
[
�i(r, θ, q) − φi

0(r, θ)
] = qh2H2(r, θ)N [�i(r, θ, q)], (39)

which are subject to the boundary conditions

�i(0, 0, q) = 0,
∂�m(r, 0, q)

∂r

∣∣∣∣
r=+∞

= −E0. (40)

When q = 0, it is easy to verify that

�m(r, θ, 0) = φm
0(r, θ), �i(r, θ, 0) = φi

0(r, θ). (41)

When q = 1, since h1 �= 0, h2 �= 0,H1(r, θ) �= 0 and H2(r, θ) �= 0, the zero-order deformation
equations (38)–(40) are equivalent to the original equations (1)–(3), provided

�m(r, θ, 1) = φm(r, θ), �i(r, θ, 1) = φi(r, θ). (42)

Thus, as q increases from 0 to 1,�m(r, θ, q) and �i(r, θ, q) vary from the initial guesses
φm

0(r, θ), φi
0(r, θ) to the solutions φm(r, θ), φi(r, θ) of equations (1)–(3), respectively.

By Taylor’s theorem and using (41), we obtain the power series

�m(r, θ, q) = φm
0(r, θ) +

∞∑
n=1

φm
n(r, θ)qn (43)

and

�i(r, θ, q) = φi
0(r, θ) +

∞∑
n=1

φi
n(r, θ)qn, (44)

where

φm
n(r, θ) = 1

n!

∂n�m(r, θ, q)

∂qn

∣∣∣∣
q=0

, φi
n(r, θ) = 1

n!

∂n�i(r, θ, q)

∂qn

∣∣∣∣
q=0

. (45)

Assuming that the auxiliary parameters h1, h2 and the auxiliary functions H1(r, θ),H2(r, θ)

are properly chosen so that the above series converge at q = 1, we have

φm(r, θ) = φm
0(r, θ) +

∞∑
n=1

φm
n(r, θ) (46)

and

φi(r, θ) = φi
0(r, θ) +

∞∑
n=1

φi
n(r, θ). (47)

The corresponding Mth-order approximations are given by

φm(r, θ) ≈ φm
0(r, θ) +

M∑
n=1

φm
n(r, θ), (48)

φi(r, θ) ≈ φi
0(r, θ) +

M∑
n=1

φi
n(r, θ). (49)
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Note that φm
n(r, θ) and φi

n(r, θ), (n = 0, 1, 2, . . .) satisfy

φi
n(r, θ) = φm

n(r, θ)
∣∣
r=ρ

(50)

and

∂nJ [�m(r, θ, q)]

∂qn
= ∂nJ [�i(r, θ, q)]

∂qn

∣∣∣∣
q=0,r=ρ

, (51)

where J [�α(r, θ, q)] = �α
r

[
σαr2 + χα(r2

(
�α

r

)2
+

(
�α

θ

)2)]/
r2, α = i or m. From (43) and

(44), it can be seen that the boundary conditions (2) and (3) are satisfied.
It is to be stressed that the asymptotic conditions (29) are a part of the boundary conditions

for the problem we discussed. As our obtained solutions can be expressed in the form of (30)
and (31), respectively, we can see that the asymptotic conditions (29) are satisfied. So in the
following computation and analysis, we just consider the boundary conditions (2) and (3),
conditions (50) and (51) are just components form of (2) and (3), respectively.

For the sake of simplicity, we define the vectors

�φm
k (r, θ) = (

φm
0(r, θ), φm

1(r, θ), φm
2(r, θ), . . . , φm

k(r, θ)
)

and

�φi
k(r, θ) = (

φi
0(r, θ), φi

1(r, θ), φi
2(r, θ), . . . , φi

k(r, θ)
)
.

Differentiating the zero-order deformation equations (38) and (39) k times w.r.t. q, then
dividing by k!, and finally setting q = 0, we have the higher order deformation equations

L
[
φm

k(r, θ) − χkφ
m

k−1(r, θ)
] = h1H1(r, θ)Rm

k

(�φm
k−1(r, θ)

)
, (52)

L
[
φi

k(r, θ) − χkφ
i
k−1(r, θ)

] = h2H2(r, θ)Ri
k

(�φi
k−1(r, θ)

)
, (53)

which are subject to the boundary conditions

φi
k(0, 0) = 0,

∂φm
k(r, 0)

∂r

∣∣∣∣
r=+∞

= 0, (54)

where

Rm
k

(�φm
k−1(r, θ)

) = 1

(k − 1)!

∂k−1

∂qk−1
N

[ ∞∑
n=0

φm
n(r, θ)qn

]∣∣∣∣∣
q=0

,

Ri
k

(�φi
k−1(r, θ)

) = 1

(k − 1)!

∂k−1

∂qk−1
N

[ ∞∑
n=0

φi
n(r, θ)qn

]∣∣∣∣∣
q=0

and

χk =
{

0, k � 1,

1, k > 1.
(55)

Note that the higher order deformation equations (52)–(54) are uncoupled, and each one is
an inhomogeneous linear partial differential equation. With the aid of symbolic computation
software, the solutions of them can be constructed by separating variables together with the
method of undetermined coefficients. For simplicity, we set H1(r, θ) = H2(r, θ) = 1, h1 =
h2 = h, and the critical value ρ = 1. Here an example is given to show how to solve each

8
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higher order deformation equation; for example, the higher order deformation equation for
φm

2(r, θ) is

σm

((
∂2

∂r2
φm

2(r, θ)

)
r2 +

(
∂

∂r
φm

2(r, θ)

)
r +

(
∂2

∂θ2
φm

2(r, θ)

))

=
(

24E0
5d0

2d1hχm

r7
− 2h2E0

5d0
5χm

2

σmr9

)
cos 3θ −

(
8E0

5d0
2hχmu1

r3

+
12E0

3σmd0
3hχm − 36E0

5σmd0
2b1hχm + 12E0

3σmd0
3h2χm

3σmr5

− 24E0
5d0

2d1hχm

r7
+

56h2E0
5d0

5χm
2

3σmr9

)
cos θ. (56)

Supposing that it has particular solutions

φm
2(r, θ) = s1 cos 3θ

r7
+

s2 cos 3θ

r9σm

+
s3 cos θ

r3
+

s4 cos θ

r5σm

+
s5 cos θ

r7
+

s6 cos θ

r9σm

, (57)

and substituting (57) into (56), and then setting the coefficient of different items cos(iθ)/rj to
be zero generates a linear algebraic system for sk⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4σm

(
3E0

5d0
2b1hχm − 6s4 − E0

3d0
3h2χm − E0

3d0
3hχm

) = 0,

−8σm

(−3hE0
5d0

2χmd1 + 5σms1
) = 0,

−72σms2 − 2h2E0
5d0

5χm
2 = 0,

24σm

(−2s5σm + hE0
5d0

2χmd1
) = 0,

−56h2E0
5d0

5χm
2 − 80σms6 = 0,

−8σm

(
s3σm + hE0

5d0
2χmu1

) = 0,

(58)

which on solving gives{
s1 = 3hE0

5d0
2χmd1

5σm

, s2 = −h2E0
5d0

5χm
2

36σm

, s3 = −hE0
5d0

2χmu1

σm

,

s4 = 1

2
E0

5d0
2b1hχm − 1

6
E0

3d0
3h2χm − 1

6
E0

3d0
3hχm,

s5 = hE0
5d0

2χmd1

2σm

, s6 = −7h2E0
5d0

5χm
2

10σm

}
. (59)

Substituting (59) into (57), the particular solution of (56) reads

φm
2(r, θ) = E0

3d0
2hχm

(
108E0

2d1r
2σm cos(3θ) − 5hE0

2d0
3χm cos(3θ)

− 180E0
2 cos(θ)u1r

6σm + 90 cos(θ)r4σmE0
2b1

− 30 cos(θ)r4σmd0h − 30 cos(θ)r4σmd0 + 90E0
2d1r

2σm cos(θ)

− 42hE0
2d0

3 cos(θ)χm

)/(
180r9σm

2). (60)

From the solution (36), we know that the corresponding homogeneous equation (34)
has the solution φm(r, θ) = brc cos c θ + dr−c cos c θ when α = m. For each component
φm

k(r, θ) of the solution series, we determine the value of c according to the asymptotic
condition (29) as well as the rules offered in the homotopy analysis method, namely the rule
of solution expression (30) and the rule of coefficient ergodicity, which means that as the order
of approximation tends to infinity, each case should appear in the solution expression and
each coefficient can be modified. Therefore, we take c = 1 in the first component (φm

0(r, θ)

9
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only contains cos θ ), in the second component (φm
1(r, θ) contains cos θ, cos 3θ ), taking c = 1

to build the cos θ term, and c = 3 to build the cos 3θ term, . . . . With the same idea, each
component φi

k(r, θ) can be uniquely determined.
On the other hand, to meet the asymptotic condition (29), the solution expression for φm

in (30) contains a term ar cos(θ). However, when we choose

φm
0(r, θ) = −E0d0 cos θ

r
+ b0r cos(θ),

the obtained value of b0 is zero in each valid solution for b0, d0, c0 obtained by meeting the
boundary conditions (50) and (51). Each of the conductive coefficients χm, χi, σm and σi

should be positive. Therefore, we straightly choose φm
0(r, θ) = −E0d0 cos θ

r
, and assume that

a term u1r cos(θ) be contained in φm
1 (r, θ). From the following BC1 we know that u1 is

arbitrary. For simplicity, we choose u1 = −E0; in such case, the asymptotic condition (29) is
satisfied, and other components of solution series for φm do not need to contain a term which
is linear w.r.t. r cos(θ).

So the solution of the corresponding homogeneous equation of equation (56) is in the
form

φm
2(r, θ) = E0

5

(
d2

r
cos θ +

b2

r3
cos 3θ +

u2

r5
cos 5θ

)
, (61)

where b2, d2, u2 are parameters to be determined later.
The solution to equation (56) can be generated by combining solution (61) with (60).
In this way, we have

φm
1(r, θ) = E0

3

(
b1

r
+

hχmd0
3

6r5σm

+ u1r

)
cos θ +

E0
3d1

r3
cos 3θ,

φi
1(r, θ) = E0

3c1r cos θ + E0
3e1r

3 cos 3θ,

φm
2(r, θ) =

(
E0

5d2

r
− E0

5hχmd0
2u1

σmr3
+

E0
5hχmd0

2d1

2σmr7
+

7E0
5h2χm

2d0
5

30σm
2r9

+
E0

3hχmd0
2
(
E0

2 90b1σm + 30σmhd0 + 30σmd0
)

180σm
2r5

)
cos θ

+ E0
5

(
b2

r3
+

3hχmd0
2d1

5σmr7
+

h2χm
2d0

5

36σm
2r9

)
cos 3θ +

E0
5u2

r5
cos 5θ,

φi
2(r, θ) =

(
E0

5c2r +
3E0

5hχic0
2e1

2σi

r3

)
cos θ + E0

5e2r
3 cos 3θ + E0

5v2r
5 cos 5θ,

...

To meet the boundary conditions (50) and (51) via the first component φm
0(r, θ) and

φi
0(r, θ), we have⎧⎪⎪⎨

⎪⎪⎩

(
−E0d0

r
+ E0c0r

)
cos(θ) = 0,(−E0d0σmr4 − E0
3d0

3χm − E0c0σir
6 − E0

3c0
3χir

6
)

cos(θ)

r6
= 0.

(62)

Letting the coefficient of cos(θ) in each equation be zero, an algebraic equation for c0, d0 is
obtained: ⎧⎪⎪⎨

⎪⎪⎩
−d0

r
+ c0r = 0,

−d0σmr4 − E0
2d0

3χm − c0σir
6 − E0

2c0
3χir

6

r6
= 0.

(63)

10



J. Phys. A: Math. Theor. 42 (2009) 125205 Y P Liu et al

Solving it, we have d0 = c0 = ±
√

(χm−χi)(σi−σm)

(χm−χi)E0
. Obviously, by exchanging χm and χi along

with σm and σi , a solution with a negative sign can be generated. So we just take the positive
sign and have

BC0 =
{
c0 =

√
(χi − χm)(σm − σi)

(χm − χi)E0
, d0 =

√
(χi − χm)(σm − σi)

(χm − χi)E0

}
.

Similarly, by meeting the boundary condition (50) via the first and second components
φm

0(r, θ), φm
1(r, θ) and φi

0(r, θ), φi
1(r, θ), we obtain[

6σm(c1r
6 − b1r

4 − u1r
6) + d0

3χmh
]

cos(θ) + 6σm(e1r
8 − d1r

2) cos(3θ) = 0. (64)

To meet the boundary condition (51), we have[
3χmr2

(
∂

∂r
φm

0(r, θ)

)2 (
∂

∂r
φm

1(r, θ)

)

+ 2χm

(
∂

∂r
φm

0(r, θ)

) (
∂

∂θ
φm

0(r, θ)

) (
∂

∂θ
φm

1(r, θ)

)

+ σmr2

(
∂

∂r
φm

1(r, θ)

)
+ χm

(
∂

∂r
φm

1(r, θ)

) (
∂

∂θ
φm

0(r, θ)

)2
] /

r2 = 0.

(65)

Substitute φm
0 (r, θ), φm

1 (r, θ), φi
0(r, θ), φi

1(r, θ) into (65), it has[−13E0
2χm

2d0
5h + 18E0

2χmd0
2d1r

2σm + 18E0
2c0

2χic1r
10σm

+ 18E0
2χic0

2r12e1σm − 12E0
2χmd0

2u1r
6σm + 18E0

2d0
2χmb1r

4σm

− 5σmr4d0
3χmh + 6σm

2r8b1 − 6σm
2r10u1 + 6σic1r

10σm

]
cos(θ)

+
[
18d1r

6σm
2 + 18σme1r

12σi + 36E0
2χic0

2r12e1σm − 6E0
2χmd0

2u1r
6σm

+ 36E0
2χmd0

2d1r
2σm − 2E0

2χm
2d0

5h
]

cos(3θ) = 0. (66)

Letting the coefficients of different terms cos(iθ) in (64) and (66) be zero, an algebraic system
for b1, c1, d1, u1, e1 is obtained. It can be seen that equation (65) is linear for φm

1 (r, θ), φi
1(r, θ)

as well as their derivatives. Therefore the obtained system for b1, c1, d1, u1, e1 is a group of
linear algebraic equations. In this way, we have

BC1 = {
e1 = χmE0

2d0
2(d0

3χmh + 3u1σm

)/[
9σm

(
σm + 2E0

2c0
2χi + 2χmE0

2d0
2 + σi

)]
,

d1 = χmE0
2d0

2(d0
3χmh + 3u1σm

)/[
9σm

(
σm + 2E0

2c0
2χi + 2χmE0

2d0
2 + σi

)]
,

c1 = (
9E0

2χmd0
2σm + 9E0

4c0
2χiχmd0

2 + 4E0
2c0

2χiσm + 2σmσi

+ 9χm
2E0

4d0
4 + 2σm

2 + 5σiχmE0
2d0

2)(σm + 2E0
2c0

2χi + 2χmE0
2d0

2

+ σi

)/[
3σm

(
σm + 2E0

2c0
2χi + 2χmE0

2d0
2 + σi

)(
σi + σm + 3χmE0

2d0
2

+ 3E0
2c0

2χi

)]
,

b1 = (
24χm

3E0
4d0

7h − 18E0
4c0

2χiχmd0
2u1σm + 18χm

2E0
4d0

4u1σm

+ 23σmχm
2E0

2d0
5h + 6σid0

3χmσmh + 6u1σm
3 + 24E0

2χmd0
2u1σm

2

− 6E0
2c0

2χiu1σm
2 + 30E0

4c0
2χiχm

2d0
5h + 13E0

2c0
2χid0

3χmσmh

+ d0
3χmhσi

2 − 36u1σmE0
4c0

4χi
2 − 30u1σmE0

2c0
2χiσi

+ 6d0
3χmhE0

4c0
4χi

2 + 5d0
3χmhE0

2c0
2χiσi − 6u1σmσi

2 + 5d0
3χmσm

2h

+ 15σiχm
2E0

2d0
5h

)/[
6σm

(
σm + 2E0

2c0
2χi + 2χmE0

2d0
2 + σi

)(
σi + σm

+ 3χmE0
2d0

2 + 3E0
2c0

2χi

)]}
,
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where u1 is arbitrary. Following the above analysis we choose u1 = −E0 to meet the
asymptotic condition (29).

Similarly, when meeting conditions (50) and (51) via the first, second and third
components of solution series, linear algebraic equations for b2, c2, d2, u2, v2, e2 are obtained.

If we denote the algebraic equations for bi, ci, di, ui, . . . as PSi (i � 2). PSi has
two properties: first, PSi is a group of linear algebraic equations for bi, ci, . . .; second, the
number of equations in PSi is equal to the number of variables bi, ci, di, ui, . . .. Hence,
bi, ci, di, ui, . . . can be uniquely determined. For the limitation of this paper, we just list the
solution set for b2, c2, d2, u2, v2, e2 as follows:

BC2 =
{

b2 = (
180E0

2χmσib1
2σm

2 + 180χm
2σid0

4h2σm + 1620E0
2χmσid1

2σm
2

− 720E0
2χm

2σib1σmhd0
3 − 180E0

2χiσm
2c1

2σi

+ 540E0
2χi

2σm
2c0

3he1 − 720E0
2χm

2σihd0
3d1σm

+ 180E0
2χmσiu1

2σm
2 + 485χm

3σiE0
2h2d0

6

− 1620E0
2χiσm

2e1
2σi + 840E0

2χm
2σihd0

3u1σm

+ 180χic0E0
2σihχmd0

2σmb1 + 180χm
2σid0

4hσm

− 360χic0E0
2σihχmd0

2u1σm − 60χic0σih
2χmd0

3σm

+ 180χic0E0
2σihχmd0

2d1σm − 84χic0E0
2σih

2χm
2d0

5

− 60χic0σihχmd0
3σm

)/(
360σiE0

2σm
2(χmd0 − χic0)

)
,

c2 = (
120χm

2σid0
4h2σm + 180E0

2χmσib1
2σm

2 − 1620E0
2χiσm

2e1
2σi

+ 480E0
2χm

2σihd0
3u1σm + 180E0

2χmσiu1
2σm

2

+ 401χm
3σiE0

2h2d0
6 − 540E0

2χm
2σihd0

3d1σm

+ 1080E0
2χi

2σm
2c0

3he1 − 540E0
2χm

2σib1σmhd0
3

+ 1620E0
2χmσid1

2σm
2 − 180E0

2χiσm
2c1

2σi + 120χm
2σid0

4hσm

− 540χmd0E0
2hχic0

2e1σm
2)/(

360σiE0
2σm

2(χmd0 − χic0)
)
,

e2 = (
71χm

3σiE0
2h2d0

6 + 180E0
2χmσib1σm

2d1 − 252E0
2χm

2σihd0
3d1σm

+ 90E0
2χm

2σihd0
3u1σm − 60E0

2χmσib1σm
2u1

+ 90E0
2χi

2σm
2c0

3he1 − 180E0
2χiσm

2σic1e1

+ 20χm
2σid0

4hσm + 20χm
2σid0

4h2σm

− 80E0
2χm

2σib1σmhd0
3)/(

180σiE0
2σm

2(χmd0 − χic0)
)
,

d2 = (−80E0
2χm

2σib1σmhd0
3 + 108χic0E0

2σihχmd0
2d1σm

− 5χic0E0
2σih

2χm
2d0

5 + 90E0
2χm

2σihd0
3u1σm

− 360E0
2χm

2σihd0
3d1σm + 76χm

3σiE0
2h2d0

6

+ 180E0
2χmσib1σm

2d1 + 20χm
2σid0

4hσm

− 60E0
2χmσib1σm

2u1 + 90E0
2χi

2σm
2c0

3he1

− 180E0
2χiσm

2σic1e1 + 20χm
2σid0

4h2σm

)/(
180σiE0

2σm
2(χmd0 − χic0)

)
,

u2 = χm

(−5h2χm
2d0

6 + 180u1σm
2d1 − 132χmd0

3hd1σm

)
300σm

2(χmd0 − χic0)
,

v2 = χm

(−5h2χm
2d0

6 + 180u1σm
2d1 − 132χmd0

3hd1σm

)
300σm

2(χmd0 − χic0)

}
.

12



J. Phys. A: Math. Theor. 42 (2009) 125205 Y P Liu et al

0.2

0.4

0.6

0.8

1

b6

–2 –1 0 1 2

h

Figure 1. The h-curve of b6 for fixed values σi = 0.2, σm = 0.3, χi = 4 and χm = 1.

It can be seen from the above results that only under the condition

(χm − χi)(σm − σi) < 0, (67)

are the values of parameters b0, d0, b1, c1, d1, e1, . . . real.
In [7], the authors consider a model in which the inclusion is a nonlinear dielectric material

and the host is linear (that is χm = 0). In this case, the nonlinear differential equations for
potential φ can be solved exactly. When χm = 0, our solutions can be generated as

φm(r, θ) =
[
−b1E0

3r +

(
b1E0

3 −
√

σm − σi

χi

)
1

r

]
cos(θ) (68)

and

φi(r, θ) = −
√

σm − σi

χi

r cos(θ), (69)

letting b1 = 1
/
E0

2, E0 −
√

σm−σi

χi
= B,−

√
σm−σi

χi
= C. The solutions (68) and (69) are none

other than the exact solutions (24) and (25) in [7].

4. Result analysis

Liao [20] proved that, as long as a solution series given by the HAM converges, it must be one of
the solutions. So, it is important and necessary to ensure that our solution series are convergent.
For simplicity we set E0 = 1 in the following analysis. Note that the solution series (46) and
(47) contain an auxiliary parameter h. Obviously, the convergence of them is determined by
this auxiliary parameter. However, there are four unknown parameters σm, σi, χm and χi in
our solution series. For each group given values of these parameters, h can be determined by
drawing the so-called h curve; for example, when σi = 0.2, σm = 0.3, χi = 4, χm = 1, the h
curve of b6 is displayed in figure 1. It shows that b6 is convergent if −1.2 � h � 0.2, taking
the middle value h = −0.5 to get the fastest convergent rate.
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Figure 2. The analytic approximations of φm(r, 0) given by (46) for the case σi = 0.2, σm =
0.3, χi = 4 and χm = 1. Symbols: third-order approximation; solid line: sixth-order
approximation.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

u(r,0)

0.2 0.4 0.6 0.8 1

r

Figure 3. The analytic approximations of φi(r, 0) given by (47) for the case σi = 0.2, σm =
0.3, χi = 4 and χm = 1. Symbols: third-order approximation; solid line: sixth-order
approximation.

For the parameter values σi = 0.2, σm = 0.3, χi = 4, χm = 1, we compare the third-order
and the sixth-order approximations of the solution φm(r, θ) in figure 2. It can be seen that the
third-order approximation agrees very well with the sixth-order approximation.

Similarly, figure 3 compares the third-order approximation with the sixth-order
approximation of φi(r, θ). It can be seen that they agree very well.

To further verify the correctness of the solutions obtained in this paper, we substitute
our analytic approximating solution φm(r, θ) expressed by (48) into equation (1) to evaluate
the corresponding residual error in the host region, for the same parameter values σi = 0.2,

σm = 0.3, χi = 4 and χm = 1. The residual error of the sixth-order approximation solution
φm(r, θ) under h = −0.5 is shown in figure 4(a). Note that the maximum magnitude of
the residual error is always gained when r = 1 (namely, at boundary ρ = 1). Therefore,
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Figure 4. (a) Solid line: the residual error of the sixth-order approximation φm(r, 0); symbols:
the residual error of the sixth-order approximation φm(r, 2). (b) The maximum magnitude of the
residual error of the sixth-order approximation φm(r, θ) at r = 1.
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Figure 5. (a) Solid line: the residual error of the sixth-order approximation φi(r, 0); symbols:
the residual error of the sixth-order approximation φi(r, 2). (b) The maximum magnitude of the
residual error of the sixth-order approximation φi(r, θ) at r = 1.

figure 4(b) shows the maximum magnitude of the residual error at r = 1. It can be seen that
the maximum magnitude of the residual error of the sixth-order approximation φm(r, θ) when
h = −0.5 is less than 9 × 10−7.

Similarly, we substitute the analytic approximating solution φi(r, θ) expressed by (49)
into equation (1) to evaluate the corresponding residual error in the inclusion region. The
residual error of the sixth-order approximation φi(r, θ) under h = −0.5 is shown in
figure 5(a). The maximum magnitude of the residual error at r = 1 is shown in figure 5(b).
It can be seen that the maximum magnitude of the residual error of the sixth-order
approximation φi(r, θ) when h = −0.5 is less than 7 × 10−7.

For convenience when comparing our solutions with those in [21], we compute the value∫ 1

r=0

∫ 2π

θ=0
|Ei |2 dθ dr, (70)

which is a quantity with great physical significance.
From now on, for simplicity, we denote (70) as Hj when φi is replaced by the j th-

order approximation of it. Several groups of the values of parameters χi, χm, σi and σm are
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Table 1. The values of H4,H6 and |H4 −H6| for several group values of parameters χi, χm, σi , σm.

Equation (1)
χi σi χm σm h H4 H6 |H4 − H6| type

4 0.2 1 0.3 −0.4 0.204 588 7779 0.204 588 1526 6.3 × 10−7 Strong–strong
4 0.2 1 7 −0.02 14.108 029 56 14.10802374 5.8 × 10−6 Weak–strong
4 0.2 0.1 0.3 −0.67 0.161 072 1248 0.161 072 0032 1.2 × 10−7 Strong–weak
0.4 2 0.1 3 −0.7 20.436 523 60 20.436 5844 6.08 × 10−4 Weak–weak
−4 0.2 1 −0.3 −0.1 0.617 827 2039 0.617 827 6509 4.5 × 10−7 Strong–strong
4 −0.2 0.1 3 0.04 5.156 173 620 0.617 827 6509 3.0 × 10−8 Weak–strong
4 0.2 −0.1 7 −0.02 10.420 342 70 10.420 345 39 2.7 × 10−5 Strong–weak
0.4 2 −1 7 0.02 22.936 011 96 22.936 017 96 6.0 × 10−4 Weak–weak

Table 2. The values of H4, H6 and |H4 − H6| obtained in [21] for several group values of
parameters χi, χm, σi , σm.

Equation (1)
χi σi χm σm h H4 H6 |H4 − H6| type

4 0.2 1 0.3 −0.09 3.570 725 796 3.570 728 909 7.1 × 10−5 Strong–strong
4 0.2 1 7 −0.75 8.502 676 962 8.502 676 962 0 Weak–strong
4 0.2 0.1 0.3 −0.22 1.659 787 390 1.659 787 390 1.47 × 10−3 Strong–weak
0.4 2 0.1 3 −0.926 7.701 672 968 7.701 672 968 1.2 × 10−8 Weak–weak
−4 0.2 1 −0.3 −0.00128 562.294 1434 1259.998 267 697.7041236 Strong–strong
4 −0.2 0.1 3 −0.92 5.688 265 394 5.688 265 394 1.0 × 10−9 Weak–strong
4 0.2 −0.1 7 −1.03 8.034760015 8.034760034 1.9 × 10−8 Strong–weak
0.4 2 −1 7 −0.8 12.567 392 26 12.573 605 77 6.2 × 10−4 Weak–weak

considered to indicate different types of equations, which include strong–strong, strong–weak,
weak–strong and weak–weak. It is to be stressed that among them the first component shows
the type of equation (1) in the host region, and the second component shows the type of
equation (1) in the inclusion region.

Table 1 lists the values of H4,H6 and |H4 − H6| for different values of parameters
χi, χm, σi and σm.

As mentioned in section 1, in [21] the authors first simplify the original partial differential
system for an ordinary differential system by the mode expansion method. However, for
simplicity they retain only the first mode to keep the lowest approximation. For the same
values of conductive parameters as shown in table 1, the values of H4,H6, |H6 −H4| obtained
in [21] are displayed in table 2. It can be seen that for some values of parameters χm, χi, σi, σm,
the solutions obtained in [21] significantly deviate from the true solution.

5. The effective conductivity

In this section, we investigate the effective conductivity of nonlinear composite media. The
effective constitutive equation of the composite medium is the most general nonlinear relation
between the average electric field and the average current

J̄ = F(Ē), (71)
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where J̄ and Ē denote, respectively, the average current and the average electric field. There
may be some essential differences between linear and nonlinear composite media. In a linear
composite medium, there is an exact linear relation between its average electric field and its
average current. However, if a composite medium contains nonlinear components, whether
the nonlinear component is the inclusion or the host, and even the nonlinear component has
a simple constitutive relation J = σE + χ |E|2E, the effective constitutive equation of the
composite medium is the most general nonlinear relation between the average electric field
and the average current

J̄ = σeĒ + χe|Ē|2Ē + ηe|Ē|4Ē + · · · . (72)

When the effective constitutive equation can be expressed by Taylor’s series both in the
inclusion and in the host, equation (71) can be expressed as

J̄ = 1

V

∫
�i

[(σi − σm)E + (χi − χm)|E|2E + (ηi − ηm)|E|4E + · · ·] dV

+ σmE + χm|E|2E + ηm|E|4E + · · · . (73)

From (72) and (73), we obtain
1

V

∫
�i

[(σi − σm)E + (χi − χm)|E|2E + (ηi − ηm)|E|4E + · · ·] dV

= (σe − σm)E + (χe − χm)|E|2E + (ηe − ηm)|E|4E + · · · . (74)

In this paper, we consider the nonlinear inclusion in a nonlinear host. For simplicity, we
only consider the electric field along the x-direction in the inclusion, and have

Ex = c0E0 + (3e1r
2 cos 2θ + c1)E0

3+

(
5v2r

4 cos 4θ + 3e2r
2 cos 2θ + c2 +

9e1r
2c0

2χih

2σi

)
E0

5.

(75)

Retaining only the first, third and fifth powers of E0, we have

|E|2Ex = c0
3E0

3 +
(−c0

2c1 − 3c0
2e1r

2 cos 2θ
)
E0

5. (76)

Substituting (75) and (76) into equation (74), we have

χe = χm + ρi

[
(σi − σm)χmb3 + (χi − χm)c3

0

]
,

ηe = ηm + ρi

[
(σi − σm)c2 + (χi − χm)c0

2c1
]
,

(77)

where ρi is the condense of the inclusion. Substituting the values of b3, cj (j = 0, 1, 3), we
can obtain the approximating expression for the effective conductivity.

6. Summary

In this paper, the homotopy analysis method is employed to compute analytically approximate
solutions of nonlinear conducting composite media with boundary conditions. Unlike the
traditional skills to simplify the original problem by the mode expansion method, we select a
linear partial differential equation as the auxiliary linear operator. In this way, the generated
higher order deformation equation is an inhomogeneous linear partial differential equation.
We solve it by the method of separating variables together with the method of undetermined
coefficients. Although the calculation is rather complicated, the solutions obtained in this
paper have very high precision. But then, there are conductive coefficient constraints
(χm − χi)(σm − σi) < 0 for the solution in this paper. How to seek more general solutions
requires significant work. Finally, we investigate the effective conductivity of this problem and
get the approximating expression for it. This paper shows us the validity and great potential
of the homotopy analysis method for nonlinear problems in science and engineering.
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